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N O N R I G I D  LATTICE MODEL OF HYDROGEN DIFFUSION I N  A TRANSITION METAL: 
A STATISTICAL MECHANICAL APPROACH* 

M. Howard Lee 
I n s t i t u u t  voor T h e o r e t i s c h e  Fys ika  Kathol ieke  U n i v e r s i t e i t  

Leuven, Belgium 
and 

Department of P h y s i c s ,  U n i v e r s i t y  of Georgia 
Athens, Georgia USA 

ABSTRACT 

The i s o t o p e s  of hydrogen d i f f u s e  through t r a n s i t i o n  metals such 
as  Pd w i t h  d i f f e r e n t  rates. The observed ra tes  show a complicated 
tempera ture  dependence i n c l u d i n g  a r e v e r s e d  i s o t o p e  e f f e c t .  The 
d i f f u s i o n  g e n e r a l l y  behaves n o n c l a s s i c a l l y .  Also a t  moderate d e n s i t i e s  
of hydrogen i n  Pd, t h e  embedded hydrogen can undergo second-order  (mean- 
f i e l d  type)  phase t r a n s i t i o n .  The t r a n s i t i o n  of t h i s  k ind  i m p l i e s  t h a t  
t h e r e  exist long-range a t t r a c t i v e  f o r c e s  between H atoms mediated by 
t h e  Pd l a t t i c e .  These f o r c e s  are expected t o  p l a y  a fundamental  r o l e  
i n  t h e  quantum d i f f u s i o n  of a hydrogen-dense Pd system. To p r o v i d e  a 
f i r s t - p r i n c i p l e s  d e s c r i p t i o n  of hydrogen d i f f u s i o n  i n  Pd, we have 
c o n s t r u c t e d  a p h y s i c a l  model based on two i d e a s :  ( i )  H atoms occupy t h e  
i n t e r s t i t i a l  s i t e s  of t h e  Pd l a t t i c e .  ( i i )  The Pd l a t t i c e  i s  n o n r i g i d .  
To c a l c u l a t e  t h e  t i m e  c o r r e l a t i o n  f u n c t i o n  (from which t h e  d i f f u s i o n  
c o e f f i c i e n t  may be deduced) ,  we must f o r  t e c h n i c a l  reasons  remove t h e  
n o n r i g i d i t y  from t h e  model v i a  a u n i t a r y  t r a n s f o r m a t i o n .  The tra6s- 
format ion ,  however, i n t r o d u c e s  i n t o  t h e  model some e q u i v a l e n t  i n t e r -  
a c t i o n s .  I f  t h e  t r a n s f o r m a t i o n  i s  a p p r o p r i a t e l y  chosen,  t h e  t r a n s -  
formed model can be expressed  i n  terms of c e r t a i n  q u a s i p a r t i c l e s  c a l l e d  
d i f f u s o n s .  Our r e s u l t a n t  model p r e d i c t s  t h a t  t h e  d i f f u s i o n  p r o c e s s  
i t s e l f  depends on t h e  i s o t o p e  mass as  expected b u t  t h a t  t h e  phase 
t r a n s i t i o n  tempera ture  does n o t  depend on t h e  i s o t o p e  mass. Our r e s u l t s  
seem t o  have exper imenta l  s u p p o r t .  Also, under some a p p r o p r i a t e  l i m i t s ,  
o u r  model y i e l d s  e x a c t  a n a l y t i c  e x p r e s s i o n s  f o r  t h e  t i m e  c o r r e l a t i o n  
f u n c t i o n .  

*Work supported i n  p a r t  by t h e  U.  S .  Department of  Energy under 
Cont rac t  No. DE-AS09-77ER1023. 
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458 LEE 

I.  INTRODUCTORY REMARKS 

T r a n s i t i o n  metals such  as Pd, V ,  Nb, and Tb have t h e  remarkable  

p r o p e r t y  o f  s e l e c t i v e l y  d i f f u s i n g  l i g h t  g a s e s ,  e . g . ,  hydrogen and 

hel ium i s o t o p e s . '  

can  act  as ,  f o r  example, i s o t o p e  s e p a r a t i o n  d e v i c e s  i n  n u c l e a r  f u s i o n  

r e a c t o r s .  Here,  a metal  membrane may be  used t o  e x t r a c t  t r i t i u m  (T) 

from a c o o l a n t  i n  t h e  d e s i g n  of  a f u s i o n  r e a c t o r  i n  which T ' s  are a 

by-product of a n u c l e a r  f u s i o n  r e a c t i o n .  E x t r a c t e d  T ' s  may t h e n  b e  

r e c y c l e d  as  f u e l  f o r  t h e  DT r e a c t i o n  c y c l e .  There may be  o t h e r  f a r -  

r e a c h i n g  a p p l i c a t i o n s .  

I f  used i n  t h e  form of a membrane, t h e s e  metals t h u s  

A key t o  such  a n  a p p l i c a t i o n  e v i d e n t l y  l i es  i n  unders tanding  

t h e  n a t u r e  o f  d i f f u s i o n  of  l i g h t  g a s e s  i n  t h e s e  metals, hydrogen 

d i f f u s i o n  i n  Pd b e i n g  a p r o t o t y p e  example. A t  p r e s e n t ,  t h e  

n a t u r e  of t h e  hydrogen d i f f u s i o n  i s  o n l y  p o o r l y  unders tood .  H 

atoms i n  a n  open metal  such  as Pd undergo r a t h e r  complex t r a n -  

s i t i o n s  owing t o  mutual  i n t e r a c t i o n  ( i - e . ,  H-H i n t e r a c t i o n )  

e f f e c t i v e  over  long  d i s t a n c e s ,  mediated by t h e  Pd l a t t i c e .  These 

long-range f o r c e s  are brought  about  by phonons c r e a t e d  by H 

atoms themselves  through t h e i r  o c c u p a t i o n  i n  t h e  i n t e r s t i c e s  of 

t h e  Pd l a t t i c e  and n o t  by normal Debye-type phonons. It  i s  

n e c e s s a r y ,  t h e r e f o r e ,  t o  c o n s t r u c t  a quantum t h e o r y  of d i f f u s i o n .  

There are a number o f  e x p e r i m e n t a l  f a c t s  now known which p r o v i d e  

u s  w i t h  c l u e s  as t o  how t o  approach t h i s  problem. These f a c t s  

a r e  d e s c r i b e d  h e r e  as t h e y  form a b a s i s  f o r  c o n s t r u c t i n g  o u r  

t h e o r y  of  quantum d i f f u s i o n  f o r  a h igh-dens i ty  H-Pd system. 

11. THE PHYSICS OF THE PdH SYSTEM 

A .  D i f f u s i o n  and I s o t o p e  E f f e c t  

Pa l lad ium c a n  d i s s o l v e  hydrogen t o  h i g h  c o n c e n t r a t i o n s  i n  

a n o n s t o i c h i o m e t r i c  manner. Neutron d i f f r a c t i o n  measurements 

show t h a t  t h e  hydrogen atoms occupy t h e  i n t e r s t i c e s  o f  pa l lad ium,  

i n  which these i n t e r s t i t i a l  s i tes themselves  form a n  o c t a h e d e r a l  

s u b l a t t i c e  w i t h i n  t h e  r e g u l a r  f c c  pa l lad ium l a t t i c e s L  The 
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NONRIGID LATTICE MODEL OF HYDROGEN 459 

hydrogen occupying the  i n t e r s t i c e s  causes the  volume of t he  

palladium t o  expand. The s t a t i c  d i s t o r t i o n  of t h e  l a t t i c e  may 

be de tec ted  through the  inc rease  i n  t h e  l a t t i c e  parameters, t h e  

inc rease  r e f l e c t i n g  a measure of t h e  i n t e r a c t i o n  between the  

hydrogen and the  l a t t i c e .  Evidently the re  e x i s t s  a favorable  

binding energy f o r  t h e  hydrogen a t  these  s i t e s  through e l e c t r o n  

over lap  ( see  C ) .  The hydrogen atoms i n  f a c t  v i b r a t e  about 

t h e i r  i n t e r s t i t i a l  sites. 

t h e  hydrogen (H) v i b r a t i o n a l  modes are of very high f requencies  

Owing t o  t h e  l i gh tness  of t h e  mass, 

sec-l, w e l l  above t h e  l a t t i c e  Debye (D) v i b r a t i o n a l  fre- 

quencies ( c f . ,  &wE/k :: 1,000K vs.  ,hwD/k I 200K, where 

are t h e  Planck and Boltzmann cons tan ts ,  r e spec t ive ly ,  and w 

and w 

r e spec t ive ly ) .  Thus, t h e  hydrogen modes may be considered 

loca l i zed ,  independent of t h e  l a t t i ce  motions. 

The d isso lved  hydrogen atoms a r e  a l s o  extremely mobile. The 

t r a n s i t i o n  r a t e  is -lo1’ sec- l  and t h e  se l f -d i f fus ion  c o e f f i c i e n t  

is -10 

tons  i n  water.  The hydrogen atoms, on t h e  average, remain about 

t h e i r  sites f o r  some 10 o s c i l l a t i o n s  before  moving t o  t h e i r  

nearest-neighbor sites. With r e spec t  t o  t h e s e  f a s t  moving i n t e r -  

s t i t i a l  hydrogen atoms, t h e  la t t ice  palladium atoms may b e  

thought of as e s s e n t i a l l y  unmoving o r  very slowly moving, under- 

going only  coherent l a t t i c e  v i b r a t i o n s  (i.e.,  low-energy 

phonons) . 

and k 

H 
denote v i b r a t i o n a l  hydrogen and Debye f requencies ,  D 

3 

-6 2 cm /sec ,  both of which a r e  comparable t o  those  of pro- 

3 

The v i b r a t i o n a l  and t r a n s i t i o n a l  motions of t h e  d isso lved  

hydrogen atoms are determined t o  a l a r g e  ex ten t  by t h e i r  zero- 

po in t  energ ies  and d i s c r e t e  energy levels.()  

t u r e s ,  t h e  protons d i f f u s e  by hopping from s i te  t o  s i te  and do 

no t  propagate l i k e  conduction e l ec t rons  ( i . e . ,  no coherence 

between t h e  i n i t i a l  and f i n a l  s t a t e s ) .  The hopping t r a n s i t i o n s  

a r e  very s e n s i t i v e  t o  t h e  slow motions of t h e  palladium l a t t i c e  

s i n c e  t h e  pa th  of t h e  oc t ahedra l - s i t e  t r a n s i t i o n  f o r  t he  hydro- 

gen l ies  d i r e c t l y  between two f c c  l a t t i c e  palladium atoms which 

A t  normal tempera- 
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460 LEE 

can the re fo re  i n t e r f e r e .  The t r a n s i t i o n  can b e  brought about 

by symmetric l a t t i c e  modes, producing a l a t t i c e  a c t i v a t i o n  or  

d i s t o r t i o n  energy of 0 .1  t o  0.5 e V  ( f o r  t h e  t e t r a h e d r a l - s i t e  

t r a n s i t i o n  o r  i n  a bcc l a t t i c e  metal ,  t h e  s i t u a t i o n  is  q u i t e  

d i f f e r e n t ) .  Hence, t h e  i n t e r a c t i o n  between t h e  l o c a l  modes and 

phonons i s  t h e  important rate-determining f a c t o r  f o r  t h e  

t r a n s i t i o n .  A t  low concent ra t ions ,  t h e  hydrogen atoms can appear 

t o  d i f f u s e  a s  i f  by a random walk wi th  jump l eng th  equal t o  t h e  

d i s t ance  between nearest-neighbor oc tahedra l  sites (-2.858). 

higher concent ra t ions ,  t h e  d i f f u s i o n  becomes more complex owing 

t o  g rea t e r  d i s t o r t i o n s  of t h e  l a t t i c e  r e s u l t i n g  i n  a more complex 

i n t e r a c t i o n  between t h e  l o c a l  modes and t h e  l a t t i ce .  It 

ind ica t e s  t he re fo re  t h a t  t h e r e  may b e  d i f f e r e n t  d i f f u s i o n  mecha- 

nisms opera t ing  i n  d i f f e r e n t  phys ica l  regimes. The observed 

nonc la s s i ca l  behavior of t h e  i so tope  e f f e c t  confirms t h e  

complexity of d i f fus ion .  

A t  

5 

6 Class i ca l  r a t e  theory p r e d i c t s  t h a t ,  f o r  a family of iso- 

topes ,  t h e  l i g h t e r  members d i f fused  f a s t e r  than t h e  heavier  ones. 

This p red ic t ion  is  q u i t e  genera l ly  observed f o r  f ami l i e s  of heavy 

i so topes .  Also, f o r  f ami l i e s  of l i g h t  i so topes ,  e.g. ,  H and D, 

t h i s  p red ic t ion  i n  metals such as V ,  Nb, T a  is v a l i d  although 

c l a s s i c a l  rate theory cannot otherwise expla in  t h e  experimental 

da ta .  In  c o n t r a s t ,  t h e  d i f f u s i o n  of H and D i n  palladium shows 

t h e  reversed i so tope  dependence5 f o r  t h e  temperature range o f .  

100 t o  500K. 

i .e . ,  above 600K and below 50K. 

ments of t h e  t r i t i u m  d i f f u s i o n  i n  palladium, t h e  a v a i l a b l e  

information adds f u r t h e r  confusion. Above 600K, t h e  d i f f u s i o n  

r a t e  follows t h e  sequence of T,  H ,  and D. I n  t h e  range of 100 

t o  500K, it is D ,  H and T. Below 50K, t h e r e  are no measurements 

f o r  T. 

dependence t h e  mechanisms of t h e  hydrogen d i f f u s i o n  i n  palladium. 

The c l a s s i c a l  r a t e  theory is  wholly inadequate t o  dea l  wi th  t h e  

quantum d i f f u s i o n  processes.  

But t h e  d i f f u s i o n  is "normal" ou t s ide  t h i s  range, 

Although t h e r e  are few measure- 

Evidently,  one can l e a r n  from t h e  observed i so tope  

The e x i s t i n g  nonc la s s i ca l  t h e o r i e s  
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NONRIGID LATTICE MODEL OF HYDROGEN 461 

are l a r g e l y  phenomenological and they d i f f e r  considerably from 

one another i n  t h e  d e t a i l s  of t h e  hydrogen- la t t ice  coupling, 

about which s t i l l  too l i t t l e  is known. These t h e o r i e s  more o r  

less p red ic t  t h e  Arrhenius behavior f o r  t h e  proton d i f f u s i o n  a t  

high temperatures and suggest a cons iderable  depar ture  from it 

a t  temperatures below t h e  Debye temperature. The f i r s t -p r inc ip l e s  

(quantum) theo r i e s  of d i f f u s i o n  are, however, no t  ye t  s u f f i c i e n t l y  

developed t o  be i n  a p o s i t i o n  t o  provide an i n t e r p r e t a t i o n  of 

t hese  experimental r e s u l t s .  

B. Critical Point Behavior 

The pressure-concentration isotherms f o r  hydrogen i n  

palladium show an appealing s i m i l a r i t y  t o  t h e  w e l l  knownpressure- 

dens i ty  isotherms f o r  simple fluids. '  

t h e  l a t t i c e  hydrogen d i sp lay  a c r i t i c a l  po in t  below which a 

low concent ra t ion  A-phase i s  separated from a high concent ra t ion  

B-phase by a mixed o r  coex i s t ing  phase region. By analogy, t h e  

A phase reg ion  may be  regarded as corresponding t o  a vapor-like 

phase and the  B phase t o  a l i qu id - l ike  phase (even though i n  

both t h e  A and B phases t h e  hydrogen occupies the oc tahedra l  

i n t e r s t i t i a l  pos i t i ons  of t h e  f c c  palladium l a t t i c e ) .  

s t a l l i n e  s t r u c t u r a l  f e a t u r e s  of t h e  hydrogen i n  t h e  PdH system 

and t h e  vapor-liquid i n t e r p r e t a t i o n  are not  incompatible. The 

PdH system is a r e a l i z a t i o n  of t h e  l a t t i c e  gas model, t h e  

palladium providing t h e  l a t t i c e  c e l l s  o r  i n t e r s t i t i a l  s i tes which 

the  hydrogen can occupy as a l a t t i c e  gas.' 

c r i t i c a l  va lues  of t h e  l a t t i ce  hydrogen8 are approximately 

Tc = 566K, Pc = 20 a t m . ,  pc = 0.021 atoms/g , which may be  com- 

pared wi th  those  of t h e  "free" hydrogen, Tc = 33K, Pc = 1 3  a t m s . ,  

pc = 0.009 moleculesfg . 
c a l  temperature, p re s su re  and dens i ty ,  r e spec t ive ly .  

In  f a c t ,  t h e  isotherms of 

The cry- 

The measured 

3 

Pc, and pc denote t h e  c r i t i -  Here, Tc, 3 

Beyond t h e  broad s i m i l a r i t y  between t h e  hydrogen of PdH 

and t h e  l a t t i ce  gas  model, t h e r e  are some important d i f f e rences  

which se rve  t o  br ing  ou t  information about fo rces  opera t ing  i n  

PdH. The most s i g n i f i c a n t  of t hese  i s  that, un l ike  the r i g i d  
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4 6 2  LEE 

l a t t i c e  gas  model, t h e  palladium l a t t i c e  i s  nonr ig id .  The phase 

t r a n s i t i o n  i n  the l a t t i c e  gas  model i s  caused by the short-range, 

two-body a t t r a c t i v e  i n t e r a c t i o n .  

t h e  PdH system, t h e  non- r ig id i ty  o f  t h e  Pd l a t t i c e  is t h e  

primary source  of t h e  a t t r a c t i v e  i n t e r a c t i 0 n . l  

a t t r a c t i v e  i n t e r a c t i o n  can b e s t  be observed through t h e  c r i t i c a l  

behavior of t h e  PdH system. 

The r ecen t  experimental  work' i n d i c a t e s  t h a t  f o r  a c r i t i c a l  

For t h e  phase t r a n s i t i o n  i n  

The n a t u r e  o f  t h i s  

-3 region g r e a t e r  than 10  

mean-field-like [ i . e . ,  w i th in  t h e  experimental  e r r o r s  a = 0 

(discontinuous),  $ = 1/2,  A = 1, 6 = 3 and t h e  dynamic exponents 

may a l s o  be mean-field-like ( i . e . ,  T - I T - T ~ (  

Here, a, B, y,  6 and A are c r i t i c a l  exponents f o r  t h e  s p e c i f i c  

hea t ,  dens i ty ,  isotherm and higher-order f r e e  energy (gas expo- 

nent ) ,  r e spec t ive ly ,  and T denotes t h e  r e l a x a t i o n  time and T t h e  

temperature.14 NOW most n o n c l a s s i c a l  systems (i.e., systems not  

behaving mean-field-like) d i sp l ay  nonc la s s i ca l  behavior f o r  a 

c r i t i c a l  region a l r eady  much g r e a t e r  than  10 . Hence, one 

be l i eves  t h a t  t h e  c r i t i c a l  behavior of the PdH system i s  c l a s s i -  

c a l  e n t i r e l y  and suspec t s  t h a t  i t  i s  c l a s s i c a l  because of t h e  

s p e c i a l  n a t u r e  of fo rces  ope ra t ing  between t h e  hydrogen atoms i n  

t h e  palladium l a t t i c e .  These fo rces  a r e  r e c e n t l y  recognized t o  

be predominantly e l a s t i c  a r i s i n g  from t h e  hydrogen atoms a c t i n g  

as d e f e c t s  i n  t h e  palladium l a t t i c e .  Since each de fec t  i n f luences  

a l l  o the r  d e f e c t s ,  t h e  f o r c e s  must ope ra t e  over long d i s t a n c e s  i n  

a body of f i n i t e  s i z e .  The f o r c e s  o f  t h i s  type  are a t t r a c t i v e ,  

hence t h e  system can condense. But t h e  long-range fo rces ,  o r  a 
high number of i n t e r a c t i n g  neighbors,  g ive  rise t o  t h e  observed 

c l a s s i c a l  behavior of t h e  phase t r a n s i t i o n  i n  t h e  PdH system. 

C. Superconduct iv i ty  

t h e  s t a t i c  c r i t i c a l  exponents a r e  a l l  

-A where A = l)]. 

-3 

Pure palladium metal does not  d i sp l ay  superconduct iv i ty .  

But when hydrogen is  d isso lved  i n  palladium, t h e  PdH system 

begins t o  e x h i b i t  superconduct iv i ty  when t h e  concen t r a t ion  of 

t h e  hydrogen reaches  t h e  va lue  of x : 0.7, where x denotes t h e  
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NONRIGID LATTICE MODEL OF HYDROGEN 463 

number of H per Pd.' 

Ts begins t o  increase  very sharp ly  a s  x i nc reases  a t t a i n i n g  i t s  

maximum value  a t  x L 1 and then  it begins t o  decrease  as x 

f u r t h e r  increases ,  f i n a l l y  vanishing a t  x =. 2 .  

s i t i o n  temperature, 9K a t  x z 1, i s  h igh  compared wi th  t h e  

t r a n s i t i o n  temperatures of standard superconducting meta ls  [ c f . ,  

4.2K f o r  Hg, 3.5K f o r  Sn, 0.9 f o r  Z r ,  e t c . ] .  E s s e n t i a l l y  t h e  

same has been observed f o r  deuterium i n  palladium (PdD). 

Nothing is  y e t  known about t r i t i u m  i n  palladium (PdT). 

sumably it, too, becomes superconducting a t  about t h e  same va lue  

of x. 

The superconducting t r a n s i t i o n  temperature 

The maximum t ran-  

Pre-  

Superconductivity p e r t a i n s  t o  t h e  t r anspor t  of e l ec t rons .  

A t  a f i r s t  glance,  one may th ink  t h a t  i t  should bear no r e l a t i o n -  

s h i p  t o  our  t r anspor t  of protons and deuterons.  

before ,  t h e  hydrogen occupying an i n t e r s t i t i a l  s i t e  of t h e  

palladium experiences a favorable  binding energy (of about 0.1 

eV) through e l e c t r o n  overlap.  I n  t h i s  e l e c t r o n i c  s t r u c t u r e  one 

a l s o  f i n d s  t h e  source of superconductivity.  Hence, t h e  super- 

conduct iv i ty  i n  PdH and PdD can r evea l  information about t h e  

coupling of H and D t o  t h e  palladium l a t t i c e  which a l s o  de t e r -  

mines t h e  d i f f u s i o n  of H and D. The connection becomes more 

apparent through the following observation: It is known that 

Ts i s  r e l a t e d  t o  t h e  i s o t o p i c  mass M by t h e  r e l a t i o n  T 

cons tan t  f o r  a given element.20 

example, T (H) = 9K and Ts(D) = 1 1 K ,  i nd ica t ing  aga in  a reversed  

i so tope  dependence as i n  t h e  d i f f u s i o n  of H and D. 

A s  mentioned 

Mf = 
8 

One f i n d s  t h a t  a t  x = 1, f o r  

5 

The e l e c t r o n i c  s t r u c t u r e  of Pd i s  as f 0 1 l o w s : ~  

s 

The Fermi 

energy of Pd l i e s  near  the top  of t h e  4d bands leaving  0.36 

u n f i l l e d  4d state per Pd atom and i t  i n t e r s e c t s  t h e  broad 5sp 

bands. Also, t he  hydrogen occupying t h e  oc tahedra l  s i tes can 

genera te  a group of new low-lying states. The e l e c t r o n s  from 

t h e  d isso lved  hydrogen atoms begin t o  f i l l  t h e  low-lying 

H-induced new states and t h e  u n f i l l e d  4d states e a s i l y  without 

much a f f e c t i n g  t h e  e x i s t i n g  Permi energy. A t  x :: 0.6, t h e s e  
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two types of states become completely sa tu ra t ed  ( i . e . ,  no more 

paramagnetism). 

h i t h e r t o  u n f i l l e d  5sp bands above t h e  4d bands. 

l o w  dens i ty  of s t a t e s ,  t h e  Fermi energy must now be  s u b s t a n t i a l l y  

r a i sed .  

Additional uptake of H involves f i l l i n g  of t h e  

Owing t o  t h e  

Superconductivity i s  brought about by t h e  f i l l e d  5sp bands 

above t h e  top of t h e  4d bands.' 

0.4 t o  0.6 conduction e l ec t ron  per Pd atom and t h e  system be- 

haves much l i k e  a f r e e  e l ec t ron  metal. 

begins t o  occupy t h e  si tes of t h e  t e t r a h e d r a l  s u b l a t t i c e .  I n  

t h i s  conf igura t ion  t h e  hydrogen favors  bonds of t h e  e l e c t r o n -  

shar ing  type and PdH no longer  resembles a f r e e  e l e c t r o n  m e t a l ,  

i .e . ,  t he  superconductivity vanishes .  Thus i t  i s  i n  t h e  oc ta -  

hedra l  s u b l a t t i c e  where one f i n d s  t h e  source of t h e  superconduc- 

t i v i t y  i n  PdH. A recent  measurement" of t h e  s p e c i f i c  hea t  a t  

l i q u i d  H e  temperature f u r t h e r  i n d i c a t e s  t h a t  t h e  conduction 

e l ec t rons  a r e  coupled t o  t h e  (low-energy) acous t i c  phonons. 

Although t h e  cu r ren t  t heo r i e s  based on these  ideas  are s t i l l  not  

a b l e  t o  g ive  a q u a n t i t a t i v e  explana t ion  f o r  the superconduct iv i ty  

i n  PdH and PdD, they do y i e l d  Ts f o r  H and D which are q u a l i t a -  

t i v e l y  co r rec t  and a l s o  anomalous ( i . e . ,  reversed i s o t o p i c  

dependence). 

A t  x = 1, t h e r e  is  approximately 

I f  x + 2 ,  t h e  hydrogen 

111. THEORETICAL CONSIDERATION 

The d i f f u s i o n  c o e f f i c i e n t  D of hydrogen has been commonly 

viewed i n  t h e  pas t  through a un ive r sa l  r e l a t i o n  of t h e  following 

form: 

D = D 0 exp{-U/kT), (1) 

where, according t o  c l a s s i c a l  rate theory,  U i s  t h e  a c t i v a t i o n  

energy and D i s  some cons tan t  independent of temperature (o r  a t  

bes t  weakly :emperature-dependent) .4 Many experimental  r e s u l t s  

f o r  d i f fus ion  have been f i t t e d  t o  the above r e l a t i o n .  While 

eq. (1) approximately r ep resen t s  t h e  observed d i f f u s i o n  f o r  a 
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NONRIGID LATTICE ’MODEL OF HYDROGEN 465 

cons iderable  range of temperature, t h e  two c o e f f i c i e n t s  Do and 

U do no t  behave as p red ic t ed  by t h e  rate theory.6 

is  extremely l i g h t  compared wi th  t h e  hos t  palladium, t h e  

d i f fus ion  processes cannot be properly understood i n  t h e  

c l a s s i c a l  contex t .  

account f o r  t h e  d i f f u s i o n  of hydrogen. 

S ince  hydrogen 

It i s  necessary t o  u t i l i z e  quantum theory t o  

The d i f fus ion  c o e f f i c i e n t  D has  been measured f r equen t ly  by 

one of two ways: Gorsky e f f e c t  and neutron s c a t t e r i n g .  The 

ex i s t ence  of a n e l a s t i c i t y  i n  t h e  PdH system gives  rise t o  a 

simple r e l a t i o n s h i p  between D and t h e  r e l axa t ion  time T ,  

D T = cons tan t  (2 )  

11 where t h e  cons tan t  depends on t h e  geometry of t h e  hos t  sample. 

Thus, by measuring ‘I d i r e c t l y  through t h e  a n e l a s t i c i t y  of t h e  

PdH system ( the  Gorsky e f f e c t t 2  o r  somewhat i n d i r e c t l y  through 

t h e  neurton s c a t t e r i n g ,  D can be  experimentally determined. 

Since our t h e o r e t i c a l  approach u t i l i z e s  t h e  s c a t t e r i n g  theory,  

w e  s h a l l  b r i e f l y  expla in  t h e  l a t te r  connection. The d i f f e r e n t i a l  

s c a t t e r i n g  c ros s  sec t ion  a is r e l a t e d  t o  t h e  t r a n s i t i o n  probabi- 

l i t y  per u n i t  t i m e  Wif (whose inve r se  g ives  t h e  rate o r  re laxa-  

t i o n  t i m e )  a s  

3 

13  

2 d a  
dCldEf I wif  
-=  (3)  

where I conta ins  a l l  t h e  i n e s s e n t i a l  f a c t o r s  such as t h e  nuc lear  

form f a c t o r ,  and i and f denote t h e  i n i t i a l  and f i n a l  states, 

r e spec t ive ly ,  and R is  t h e  s o l i d  angle  and Ef t h e  f i n a l  energy. 

The t r a n s i t i o n  p r o b a b i l i t y  i s  given by quantum mechanics a s  

where the usua l  energy conservation and counting over t h e  f i n a l  

degenerate states are assumed. 

hydrogen i n t e r a c t i o n  mediated by, presumably, t h e  palladium 

Since H inc ludes  t h e  hydrogen- 
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l a t t i c e ,  t h e  experimental  c ros s  s e c t i o n  con ta ins  information 

about t h e  bas i c  mechanisms of d i f f u s i o n .  Conversely, t h e  t r an -  

s i t i o n  p r o b a b i l i t y  ca l cu la t ed  from some given H can provide an 

i n t e r p r e t a t i o n  f o r  t h e  observed d i f f u s i o n  through (2 )  and a l s o  

t o  a less ex ten t  through (1). 

I f ,  as according t o  ( 4 ) ,  t h e  i n i t i a l  and f i n a l  states a r e  

known, i t  i s  i n  p r i n c i p l e  poss ib l e  t o  c a l c u l a t e  t h e  t r a n s i t i o n  

p robab i l i t y ,  hence t h e  d i f f u s i o n  c o e f f i c i e n t .  The problem of 

a harmonic s o l i d  se rves  a s  one such example. Accordingly, 

e f f o r t s  have been made t o  cons t ruc t  a quantum theory  of d i f f u s i o n  

by cons ider ing  a very  d i l u t e  concent ra t ion  of hydrogen d isso lved  

i n  a harmonic l a t t i c e  of palladium i n  which hydrogen is coupled 

t o  t h e  l a t t i c e  l i n e a r l y  only.  

have obtained an expression f o r  t h e  t r a n s i t i o n  p r o b a b i l i t y  i n  

t h e  form of (l), but wi th  d i f f e r e n t  meanings f o r  t h e  two c o e f f i -  

c i e n t s  D 

Flynn and StonehamY4 notably ,  

and U than  given by t h e  c l a s s i c a l  r a t e  theory .  

The work such as by Flynn and Stoneham rep resen t s  i n t e r e s t -  

ing f i r s t  s t e p s  i n t o  understanding t h e  quantum processes  of 

d i f f u s i o n  and is  thus  a va luab le  con t r ibu t ion .  But it is  a 

model f o r  t h e  PdH system a t  i n f i n i t e  d i l u t i o n .  It is thus  not  

expected t o  be use fu l  a t  moderate d e n s i t i e s  ( i . e . ,  A and B 

phases) of our i n t e r e s t  where t h e  i n t e r a c t i o n  between hydrogens 

mediated by t h e  l a t t i c e  is an important,  poss ib ly  dominant, 

f a c t o r  i n  t h e  quantum processes  of d i f fus ion .  That t h e  l a t t i c e  

mediated hydrogen-hydrogen i n t e r a c t i o n  i s  an e s s e n t i a l  f a c t o r  

i s  evident from t h e  now wel l -es tab l i shed  ex i s t ence  of second 

order  phase t r a n s i t i o n  i n  t h e  PdH system,8 which has been compared 

t o  t h a t  i n  t h e  homogeneous gas-liquid system.14 

ton ian  conta in ing  t h i s  kind of s t rong  and complex i n t e r a c t i o n ,  

one does not  know t h e  i n i t i a l  o r  f i n a l  states. Even i f  t h e  

i n i t i a l  s t a t e  can be  prepared i n  some way, t h e r e  may be  

innumerably many degenera te  o r  nea r ly  degenera te  f i n a l  states 

which must be  included i n  ( 4 )  f o r  t h e  t r a n s i t i o n  probabi l i ty - -a  

well-known d i f f i c u l t  problem i n  i t s e l f .  

For a Hamil- 

There is an  a l t e r n a t i v e  
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NONRIGID LATTICE MODEL OF HYDROGEN 467 

approach o r i g i n a l l y  pioneered by van Hovel5 and later developed 

by others16 s u i t a b l e  f o r  studying dynamics of s t rong ly  i n t e r -  

a c t i n g  systems (such as t h e  d i f f u s i o n  i n  t h e  PdH system a t  

d e n s i t i e s  of our interest). 

provide an understanding f o r  t h e  quantum processes of d i f f u s i o n  

and a l s o  t o  devise  a p r a c t i c a l  means of c a l c u l a t i n g  dynamic 

q u a n t i t i e s .  

We shall tu rn  t o  t h i s  approach t o  

I V .  DIFFUSION MODEL 

There a r e  two main problems f o r  studying d i f f u s i o n  from 

f i r s t  p r i n c i p l e s .  F i r s t ,  t h e  Hamiltonian must be  cons t ruc ted  by 

tak ing  i n t o  account a l l  the i n t e r a c t i o n s  important f o r  d i f f u s i o n  

i n  t h e  PdH system. 

still be  a b l e  t o  apply nonequilibrium s t a t i s t i c a l  mechanics t o  

ob ta in  so lu t ions  t o  a quantum ve r s ion  of t h e  d i f f u s i o n  equation. 

Recently w e  have developed mathematical techniques t o  treat 

c e r t a i n  time-dependent problems17, which may be app l i cab le  t o  our 

d i f f u s i o n  problem. 

Second, given such a Hamiltonian one must 

I n  cons t ruc t ing  a d i f f u s i o n  model f o r  the PdH system a t  

h igh  hydrogen concent ra t ions ,  one must t hus  inc lude  long-range 

fo rces  between hydrogen atoms embedded i n  a nonr ig id  l a t t i ce .  

Since t h e  t r a n s i t i o n  of hydrogen atoms from one i n t e r s t i t i a l  

s i te  t o  another i s  e s s e n t i a l l y  of d i s c r e t e  s t e p s ,  w e  cons t ruc t  
+ 

our model i n  terms of a set of d i s c r e t e  opera tors  ai  and a 

r e spec t ive ly ,  t h e  des t ruc t ion  and c rea t ion  ope ra to r s  of t h e  

hydrogen atoms a t  t h e  i n t e r s t i t i a l  s i t e  i. These ope ra to r s  

s a t i s f y  t h e  a lgebra  of spins.18 I n  t e r m s  of t h e s e  ope ra to r s ,  our 

model is  given as follows19: Up t o  an a d d i t i v e  cons tan t  and wi th  

a harmonic l a t t i c e  f o r  Pd whose equi l ibr ium coord ina tes  a r e  given 

i’ 

A2 + + 
H = - c [- - U..({xa3)1 (a .a  + a .a .1  

( i j )  2md2 ’’ l j  1~ 
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where m i s  t h e  pro ton  mass, d i s  t h e  l a t t i c e  spac ing  (e .g . ,  

d - 3 A ) ,  U..({x 1) is a f u n c t i o n  of t h e  i n s t a n t a n e o u s  Pd 

c o o r d i n a t e s  {xu} and K i s  t h e  s p r i n g  c o n s t a n t .  

r e p r e s e n t s  t h e  t r a n s i t i o n  energy of  p r o t o n s  i n  a n o n r i g i d  l a t t i ce .  

I n  a n o n r i g i d  l a t t i c e ,  t h e  t r a n s i t i o n  of p r o t o n s ,  however, i s  
inf luenced  by t h e  l a t t i ce  through i t s  d i s t o r t i o n .  We denote  

by U . .  ({x 1) t h e  coupl ing  of t h e  pro ton  t r a n s i t i o n  t o  t h e  Pd 

l a t t i ce .  The second term r e p r e s e n t s  t h e  u s u a l  l a t t i c e  energy.  

Here, t h e  e q u i l i b r i u m  p o s i t i o n s  {xa3 may b e  thought  of as be ing  

e q u i v a l e n t  t o  t h e  p o s i t i o n s  of a r i g i d  l a t t i ce .  

1J a 
The f i r s t  t e r m  

1J a 

Our Hamil tonian does n o t  i n c l u d e  t h e  pro ton  l o c a l i z a t i o n  

energy, n o r  any shor t - range  i n t e r a c t i o n  energy.  It c o n t a i n s  

o n l y  t h e  s i m p l e s t  hydrogen l a t t i c e  coupl ing  n e c e s s a r y  f o r  d i f f u -  

s i o n .  S t i l l ,  o u r  Hamil tonian i s  n o t  s imple  s i n c e  t h e  pro ton  and 

Pd c o o r d i n a t e s  are coupled.  To decouple  them, w e  expand U({x,)) 

about  t h e  e q u i l i b r i u m  p o s i t i o n s ,  r e t a i n i n g  t h e  f i r s t - o r d e r  terms 

i n  t h e  Pd l a t t i ce  displacement  o n l y .  W e  t h e n  have 

where Ho i s  t h e  t r a n s i t i o n  energy e v a l u a t e d  a t  t h e  e q u i l i b r i u m  

p o s i t i o n s  of Pd and H i s  g i v e n  by 1 

o u  + + H = +c(x -x )u  - Caiaj + aiajl 1 c1 c1 ij 

where 

The hydrogen and Pd c o o r d i n a t e s  are s t i l l  coupled i n  H1, b u t  

they  can b e  decoupled by a u n i t a r y  t r a n s f o r m a t i o n ,  
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fi = T H T-', 

469 

(9) 

where w e  choose 

T = a rexp{-iK-lPaZUa i j  <a+, i j  + a i j  a+) I 

where Pa is themomentumof the Pd atom. 

Hamiltonian is as follows: 

The unitary-transformed 

where 

+ + +  + x (a a + a a )(aman + aman) 
i j  i j  

and % conta ins  t h e  Pd coord ina tes  only ,  i .e. ,  a pure Pd l a t t i c e  

energy, which the re fo re  may be  included i n  t h e  a d d i t i v e  cons tan t .  

W e  have taken advantage of t h e  invar iance  of t h e  p a r t i t i o n  func- 

t i o n  under u n i t a r y  t ransformat ions  t o  uncouple t h e  hydrogen and 

Pd coord ina tes .  
P 

i n  terms of t h e  Pd equi l ibr ium coord ina tes  only.  That is ,  t h e  

hydrogen t r a n s i t i o n  i n  our transformed model takes  p lace  i n  a 

r i g i d  l a t t i c e .  The model, however, has more complex hydrogen- 

hydrogen i n t e r a c t i o n s  than t h e  o r i g i n a l  model. 

Furthermore, our choice f o r  T g ives  H and H 

The i n t e r a c t i o n  energy has t h e  f e a t u r e  that it may be 
P 

reduced t o  a product of two e s s e n t i a l l y  independent b i l i n e a r  

f a c t o r s .  

of a mode loca l i zed  over a samll reg ion  of space. 

regards  t h i s  c r ea t ion -ann ih i l a t ion  process as co r re l a t ed  ( i .e . ,  

a q u a s i p a r t i c l e  of d i f f u s i o n  o r  a "diffuson") , t h e  i n t e r a c t i o n  

energy c o n s i s t s  of pa i r ing  of t h e s e  d i f fusons  over t h e  e n t i r e  

Each b i l i n e a r  term rep resen t s  t h e  c rea t ion-annih i la t ion  

I f  one 
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l a t t i ce .  

l a r g e l y  unchanging, e .g . ,  Uij  Urn = U f o r  any p a i r s  of i j  and 

mn, our  d i f f u s i o n  model corresponds t o  t h e  gene ra l i zed  van d e r  

Waals model i n  a f i e l d  . Some recen t  measurements* i n d i c a t e  

t h a t  t h e  i n t e r a c t i o n  r e spons ib l e  €o r  t h e  phase t r a n s i t i o n  i n  t h e  

PdH system has t h i s  r e d u c i b l e  form, presumably a r i s i n g  from t h e  

Pd’s deformable l a t t i ce .  

If t h e  p a i r i n g  i s  e f f e c t i v e  over  a long range and 
2 

17 

I f  our  Hamiltonian con ta ins  only H t o  o b t a i n  t h e  exper i -  
0’ 

mental  va lues  of T t h e  e f f e c t i v e  pro ton  m a s s  a s soc ia t ed  wi th  

t h e  t r a n s i t i o n  h e r e  must a t  least  b e  a few o r d e r s  of  magnitude 

smaller than  t h e  a c t u a l  pro ton  mass. 

observed phase t r a n s i t i o n ,  accord ing  t o  our  model, cannot b e  H 

but  must b e  % . 
s t rong ly  depend on t h e  pro ton  mass s i n c e  H 

t h e  e l a s t i c i t y  of t h e  Pd l a t t i c e .  Our model, t h e r e f o r e ,  p r e d i c t s  

t h a t  c r i t i c a l  t empera tures  f o r  Pd-hydride systems should e x h i b i t  

l i t t l e  o r  no i s o t o p e  e f f e c t .  

should be  n e a r l y  t h e  same. This  conclus ion  seems t o  b e  borne 

out  by r ecen t  experiments2’. These r e s u l t s  i n d i c a t e  t h a t  f o r  

metal-hydride systems t h e  phonon-proton coupl ing  ( r ep resen ted  

i n  our  model by U) p lays  a c e n t r a l  r o l e .  This  f u n c t i o n  U ,  as 

may be expected,  is r a t h e r  complicated s i n c e  i t  must i nc lude  

t h e  s t r u c t u r e  and dynamics of  t h e  l a t t i ce .  I f ,  f o r  example, 

Pd atoms move c l o s e r  towards t h e  pa th  of an H atom, t h e  l a t t i c e  

motion r e t a r d s  t h e  movement of  t h e  H atom. If Pd atoms move 

away from t h e  pa th ,  t h e  l a t t i c e  motion enhances t h e  t r a n s i t i o n .  

Hence, t h e  d i f f u s i o n  of hydrogen i n  t h e  Pd l a t t i c e  c l e a r l y  

depends on t h e  coupl ing of t h e  Pd and H coord ina te s  and a l s o  on 

t h e  n o n r i g i d i t y  of t h e  l a t t i c e .  

Thus, t h e  source  of t h e  

We observe  t h a t  t h i s  l a t t i c e  energy does no t  

mainly r e p r e s e n t s  
P 

P 

That i s ,  T c ’ s  f o r  PdH and PdD 

V. TIME CORRELATION FUNCTION 

We s h a l l  d e f i n e  t h e  o r d e r  parameter  f o r  t h e  system a s  

f 0 llows2 : 
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NONRIGID LATTICE MODEL OF HYDROGEN 471 

i k - r  
i a  + i pk  = C(e 

i 

where t h e  sum extends over a l l  t h e  

- ik . r  
( 1 4 )  

i +  
e ail 

equi l ibr ium l a t t i c e  p o i n t s  r i 
and k is t h e  wavevector. 

t i o n  d iscussed  i n  I V  and wi th  no e x t e r n a l  f i e l d ,  one can re- 

express  t h e  transformed Hamiltonian (11) i n  terms of t h e  o rde r  

parameter e n t i r e l y . 2 2  

c l o s e l y  resembe t h e  van d e r  Waals Hamiltonian. That is ,  

Under t h e  constant-coupling approxima- 

The re-expressed form my be  shown t o  

fi -+ Ap2 + B p 4  , 

where A and B a r e  coupling cons t an t s  ( t h e  wavevectors a r e  

suppressed f o r  s i m p l i c i t y ) .  The van der  Waals Hamiltonian has  

been r e c e n t l y  inves t iga t ed  i n  d e t a i l 1 7 .  

t o  ga in  a cons iderable  i n s i g h t  i n t o  our model from our knowledge 

of the van de r  Waals system. I n  p a r t i c u l a r ,  t h e  long-range 

o rde r  < p >  f o r  (11) must approximately s a t i s f y  t h e  following 

r e l a t i o n :  

Thus, it is  p o s s i b l e  

where B = l /kT and 3B < 4A3E2. 

c o r r e l a t i o n  func t ion  f o r  (11) exac t ly :  

Tc = A/2k, 

For B = 0 ,  w e  know t h e  t i m e  

For T > Tc,  where 

1 
2 < p ( t ) p >  = <p2> expC- - (At )2 )  , 

where 
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< p ( t ) p >  = <p2>exp(-At2/B), 

LEE 

(19) 

where <p2> = <p>’ i f  T -f 0 ( a  more gene ra l  express ion  may b e  

found elsewhere) . 17 

The t i m e  c o r r e l a t i o n  func t ion  fo l lows  Gaussian form f o r  

temperature  above and below T . This  behavior  may be  taken  as 

an i d e a l  behavior .  The t r u e  t i m e  c o r r e l a t i o n  f u n c t i o n  f o r  our  

model (11) i s  expected t o  approach t h e  i d e a l  form under appro- 

p r i a t e  l i m i t s  a l r e a d y  descr ibed .  It i s  t h u s  reasonable  t o  

sugges t  t h a t  t h e  t i m e  c o r r e l a t i o n  f o r  our  model is  weak a t  

long-time i n t e r v a l s .  That i s ,  over  a long  t i m e  t h e  hydrogen 

t r a n s i t i o n  becomes uncor re l a t ed  and random-walk-like. But a t  

short- t ime i n t e r v a l s  and e s p e c i a l l y  below T t h e  t r a n s i t i o n  may 

be  s t r o n g l y  c o r r e l a t e d  wi th  t h e  c o r r e l a t e d  d i s t a n c e s  ranging  

much beyond t h e  average  s i z e  of d i f fusons .  
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